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HS Conceptual Category: Number and Quantity 
 

Domains 
The Real Number System 

 
Quantities The Complex Number System 

 
Vector and Matrix Quantities 

 

Clusters 

 Extend the properties of 

exponents to rational 

exponents 

 Use properties of rational 

and irrational numbers. 

 Reason quantitatively and 

use units to solve problems 

 Perform arithmetic operations with 

complex Numbers 

 Represent complex numbers and their 

operations on the complex plane 

 Use complex numbers in polynomial 

identities and equations 

 Represent and model with vector 

quantities.  

 Perform operations on vectors.  

 Perform operations on matrices and use 

matrices in applications.  

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of 

structure. 

8. Look for and express regularity in 

repeated reasoning. 
 

Numbers and Number Systems. During the years from kindergarten to eighth grade, students must repeatedly extend their conception of number. At first, number” means 

“counting number”: 1, 2, 3... Soon after that, 0 is used to represent “none” and the whole numbers are formed by the counting numbers together with zero. The next extension is 

fractions. At first, fractions are barely numbers and tied strongly to pictorial representations. Yet by the time students understand division of fractions, they have a strong concept of 

fractions as numbers and have connected them, via their decimal representations, with the base-ten system used to represent the whole numbers. During middle school, fractions are 

augmented by negative fractions to form the rational numbers. In Grade 8, students extend this system once more, augmenting the rational numbers with the irrational numbers to 

form the real numbers. In high school, students will be exposed to yet another extension of number, when the real numbers are augmented by the imaginary numbers to form the 

complex numbers .With each extension of number, the meanings of addition, subtraction, multiplication, and division are extended. In each new number system—integers, rational 

numbers, real numbers, and complex numbers—the four operations stay the same in two important ways: They have the commutative, associative, and distributive properties and 

their new meanings are consistent with their previous meanings. Extending the properties of whole-number exponents leads to new and productive notation. For example, properties 

of whole-number exponents suggest that (51/3)3 should be 5(1/3)3 = 51 = 5 and that 51/3 should be the cube root of 5. Calculators, spreadsheets, and computer algebra systems can provide 

ways for students to become better acquainted with these new number systems and their notation. They can be used to generate data for numerical experiments, to help understand 

the workings of matrix, vector, and complex number algebra, and to experiment with non-integer exponents. 

 

Quantities. In real world problems, the answers are usually not numbers but quantities: numbers with units, which involves measurement. In their work in measurement up through 

Grade 8, students primarily measure commonly used attributes such as length, area, and volume. In high school, students encounter a wider variety of units in modeling, e.g., 

acceleration, currency conversions, derived quantities such as person-hours and heating degree days, social science rates such as per-capita income, and rates in everyday life such 

as points scored per game or batting averages. They also encounter novel situations in which they themselves must conceive the attributes of interest. For example, to find a good 

measure of overall highway safety, they might propose measures such as fatalities per year, fatalities per year per driver, or fatalities per vehicle-mile traveled. Such a conceptual 

process is sometimes called quantification. Quantification is important for science, as when surface area suddenly “stands out” as an important variable in evaporation. 

Quantification is also important for companies, which must conceptualize relevant attributes and create or choose suitable measures for them. 
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The Real Number System N -RN 
Extend the properties of exponents to rational exponents. 
1. Explain how the definition of the meaning of rational exponents follows from extending the 
properties of integer exponents to those values, allowing for a notation for radicals in terms of 
rational exponents. For example, we define 51/3 to be the cube root of 5 because we want 
(51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5. 
2. Rewrite expressions involving radicals and rational exponents using the properties of 
exponents. Use properties of rational and irrational numbers. 
3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational 
number and an irrational number is irrational; and that the product of a nonzero rational 
number and an irrational number is irrational. 
Quantities N -Q 
Reason quantitatively and use units to solve problems. 
1. Use units as a way to understand problems and to guide the solution of multi-step problems; 
choose and interpret units consistently in formulas; choose and interpret the scale and the 
origin in graphs and data displays. 
2. Define appropriate quantities for the purpose of descriptive modeling.  
3. Choose a level of accuracy appropriate to limitations on measurement when reporting 
quantities. 
The Complex Number System N -CN 
Perform arithmetic operations with complex numbers. 
1. Know there is a complex number i such that i2 = –1, and every complex number has the 
form a + bi with a and b real. 
2. Use the relation i2 = –1 and the commutative, associative, and distributive properties to add, 
subtract, and multiply complex numbers. 
3. (+) Find the conjugate of a complex number; use conjugates to find moduli and quotients of 
complex numbers. 
Represent complex numbers and their operations on the complex plane. 
4. (+) Represent complex numbers on the complex plane in rectangular and polar form 
(including real and imaginary numbers), and explain why the rectangular and polar forms of a 
given complex number represent the same number. 
5. (+) Represent addition, subtraction, multiplication, and conjugation of complex numbers 
geometrically on the complex plane; use properties of this representation for computation. For 
example, (–1 + √3 i)3 = 8 because (–1 + √3 i) has modulus 2 and argument 120°. 
6. (+) Calculate the distance between numbers in the complex plane as the modulus of the 
difference, and the midpoint of a segment as the average of the numbers at its endpoints. 
Use complex numbers in polynomial identities and equations. 
7. Solve quadratic equations with real coefficients that have complex solutions. 
8. (+) Extend polynomial identities to the complex numbers. For example, rewrite x2 + 4 as (x 
+ 2i)(x – 2i). 
9. (+) Know the Fundamental Theorem of Algebra; show that it is true for quadratic 
polynomials. 
   

Vector and Matrix Quantities N -VM 
Represent and model with vector quantities. 
1. (+) Recognize vector quantities as having both magnitude and direction. Represent vector 
quantities by directed line segments, and use appropriate symbols for vectors and their 
magnitudes (e.g., v, |v|, ||v||, v). 
2. (+) Find the components of a vector by subtracting the coordinates of an initial point from 
the coordinates of a terminal point. 
3. (+) Solve problems involving velocity and other quantities that can be represented by 
vectors. Perform operations on vectors. 
4. (+) Add and subtract vectors. 
a. Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that 
the magnitude of a sum of two vectors is typically not the sum of the magnitudes. 
b. Given two vectors in magnitude and direction form, determine the magnitude and direction 
of their sum. 
c. Understand vector subtraction v – w as v + (–w), where –w is the additive inverse of w, with 
the same magnitude as w and pointing in the opposite direction. Represent vector subtraction 
graphically by connecting the tips in the appropriate order, and perform vector subtraction 
component-wise. 
5. (+) Multiply a vector by a scalar. 
a. Represent scalar multiplication graphically by scaling vectors and possibly reversing their 
direction; perform scalar multiplication component-wise, e.g., as c(vx, vy) = (cvx, cvy). 
b. Compute the magnitude of a scalar multiple cv using ||cv|| = |c|v. Compute the direction of 
cv knowing that when |c|v 0, the direction of cv is either along v (for c > 0) or against v (for c 
< 0). 
Perform operations on matrices and use matrices in applications. 
6. (+) Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence 
relationships in a network. 
7. (+) Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in 
a game are doubled. 
8. (+) Add, subtract, and multiply matrices of appropriate dimensions. 
9. (+) Understand that, unlike multiplication of numbers, matrix multiplication for square 
matrices is not a commutative operation, but still satisfies the associative and distributive 
properties. 
10. (+) Understand that the zero and identity matrices play a role in matrix addition and 
multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square 
matrix is nonzero if and only if the matrix has a multiplicative inverse.  
11. (+) Multiply a vector (regarded as a matrix with one column) by a matrix of suitable 
dimensions to produce another vector. Work with matrices as transformations of vectors. 
12. (+) Work with 2 × 2 matrices as transformations of the plane, and 
interpret the absolute value of the determinant in terms of area. 
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HS Conceptual Category: Algebra 
 

Domains 
Seeing Structure in 

Expressions 

Arithmetic with Polynomials and 

Rational Expressions 

Creating Equations Reasoning with Equations and Inequalities 

Clusters 

 Interpret the structure of 

expressions 

 Write expressions in 

equivalent forms to solve 

problems 

 Perform arithmetic operations on 

polynomials 

 Understand the relationship 

between zeros and factors of 

polynomials 

 Use polynomial identities to 

solve problems 

 Rewrite rational expressions 

 Create equations that describe 

numbers or relationships 

 Understand solving equations as a process 

of reasoning and explain the reasoning 

 Solve equations and inequalities in one 

variable 

 Solve systems of equations 

 Represent and solve equations and 

inequalities graphically 

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of 

structure. 

8. Look for and express regularity in 

repeated reasoning. 

 

Expressions. An expression is a record of a computation with numbers, symbols that represent numbers, arithmetic operations, exponentiation, and, at more advanced levels, the 

operation of evaluating a function. Conventions about the use of parentheses and the order of operations assure that each expression is unambiguous. Creating an expression that 

describes a computation involving a general quantity requires the ability to express the computation in general terms, abstracting from specific instances. Reading an expression 

with comprehension involves analysis of its underlying structure. This may suggest a different but equivalent way of writing the expression that exhibits some different aspect of its 

meaning. For example, p + 0.05p can be interpreted as the addition of a 5% tax to a price p. Rewriting p + 0.05p as 1.05pshows that adding a tax is the same as multiplying the price 

by a constant factor. Algebraic manipulations are governed by the properties of operations and exponents, and the conventions of algebraic notation. At times, an expression is the 

result of applying operations to simpler expressions. For example, p + 0.05p is the sum of the simpler expressions p and 0.05p. Viewing an expression as the result of operation on 

simpler expressions can sometimes clarify its underlying structure. A spreadsheet or a computer algebra system (CAS) can be used to experiment with algebraic expressions, 

perform complicated algebraic manipulations, and understand how algebraic manipulations behave. 
Equations and inequalities. An equation is a statement of equality between two expressions, often viewed as a question asking for which values of the variables the expressions on 

either side are in fact equal. These values are the solutions to the equation. An identity, in contrast, is true for all values of the variables; identities are often developed by rewriting 

an expression in an equivalent form. The solutions of an equation in one variable form a set of numbers; the solutions of an equation in two variables form a set of ordered pairs of 

numbers, which can be plotted in the coordinate plane. Two or more equations and/or inequalities form a system. A solution for such a system must satisfy every equation and 

inequality in the system. An equation can often be solved by successively deducing from it one or more simpler equations. For example, one can add the same constant to both sides 

without changing the solutions, but squaring both sides might lead to extraneous solutions. Strategic competence in solving includes looking ahead for productive manipulations and 

anticipating the nature and number of solutions. Some equations have no solutions in a given number system, but have a solution in a larger system. For example, the solution of x + 

1 = 0 is an integer, not a whole number; the solution of 2x + 1 = 0 is a rational number, not an integer; the solutions of x2 – 2 = 0 are real numbers, not rational numbers; and the 

solutions of x2 + 2 = 0are complex numbers, not real numbers. The same solution techniques used to solve equations can be used to rearrange formulas. For example, the formula for 

the area of a trapezoid, A = ((b1+b2)/2)h, can be solved for h using the same deductive process. Inequalities can be solved by reasoning about the properties of inequality. Many, but 

not all, of the properties of equality continue to hold for inequalities and can be useful in solving them. 

Connections to Functions and Modeling. Expressions can define functions, and equivalent expressions define the same function. Asking when two functions have the same value 

for the same input leads to an equation; graphing the two functions allows for finding approximate solutions of the equation. Converting a verbal description to an equation,  

inequality, or system of these is an essential skill in modeling.
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Seeing Structure in Expressions A-SSE 
Interpret the structure of expressions 

1. Interpret expressions that represent a quantity in terms of its context.★ 

a. Interpret parts of an expression, such as terms, factors, and coefficients. 
b. Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, 
interpret P(1+r)n as the product of P and a factor not depending on P. 
2. Use the structure of an expression to identify ways to rewrite it. For example, see x4 – y4 as (x2)2 – 
(y2)2, thus recognizing it as a difference of squares that can be factored as (x2 – y2)(x2 + y2). 
Write expressions in equivalent forms to solve problems 
3. Choose and produce an equivalent form of an expression to reveal and explain properties of the 

quantity represented by the expression.★ 

a. Factor a quadratic expression to reveal the zeros of the function it defines.  
b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the 
function it defines. 
c. Use the properties of exponents to transform expressions for exponential functions. For example the 
expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent 
monthly interest rate if the annual rate is 15%. 
4. Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use 

the formula to solve problems. For example, calculate mortgage payments.★ 

Arithmetic with Polynomials and Rational Expressions A –APR  
Perform arithmetic operations on polynomials 
1. Understand that polynomials form a system analogous to the integers, namely, they are closed under 
the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. 
Understand the relationship between zeros and factors of polynomials 
2. Know and apply the Remainder Theorem: For a polynomial p (x) and a number a, the remainder on 
division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x). 
3. Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct 
a rough graph of the function defined by the polynomial.  
Use polynomial identities to solve problems 
4. Prove polynomial identities and use them to describe numerical relationships. For example, the 
polynomial identity (x2 + y2)2 = (x2 – y2)2 +(2xy)2 can be used to generate Pythagorean triples. 
5. (+) Know and apply the Binomial Theorem for the expansion of (x + y)n in powers of x and y for a 
positive integer n, where x and y are any numbers, with coefficients determined for example by Pascal’s 
Triangle.  
Rewrite rational expressions 
6. Rewrite simple rational expressions in different forms; write a(x)/b(x) in the form q(x) + r(x)/b(x), where 
a(x), b(x), q(x), and r(x) are polynomials with the degree of r(x) less than the degree of b(x), using 
inspection, long division, or, for the more complicated examples, a computer algebra system. 
7. (+) Understand that rational expressions form a system analogous to the rational numbers, closed 
under addition, subtraction, multiplication, and division by a nonzero rational expression; add, subtract, 
multiply, and divide rational expressions. 
Creating Equations A -CED 
Create equations that describe numbers or relationships 
1. Create equations and inequalities in one variable and use them to solve problems. Include equations 
arising from linear and quadratic functions, and simple rational and exponential functions. 
 
 

2. Create equations in two or more variables to represent relationships between quantities; graph 
equations on coordinate axes with labels and scales. 
3. Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, 
and interpret solutions as viable or nonviable options in a modeling context. For example, represent 
inequalities describing nutritional and cost constraints on combinations of different foods.  
4. Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving 
equations. For example, rearrange Ohm’s law V = IR o highlight resistance R. 
Reasoning with Equations and Inequalities A -RE I 
Understand solving equations as a process of reasoning and explain the reasoning 
1. Explain each step in solving a simple equation as following from the equality of numbers asserted at 
the previous step, starting from the assumption that the original equation has a solution. Construct a 
viable argument to justify a solution method. 
2. Solve simple rational and radical equations in one variable, and give examples showing how 
extraneous solutions may arise. 
Solve equations and inequalities in one variable 
3. Solve linear equations and inequalities in one variable, including equations with coefficients 
represented by letters. 
4. Solve quadratic equations in one variable. 
a. Use the method of completing the square to transform any quadratic equation in x into an equation of 
the form (x – p)2 = q that has the same solutions. Derive the quadratic formula from this form. 
b. Solve quadratic equations by inspection (e.g., for x2 = 49), taking square roots, completing the square, 
the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the 
quadratic formula gives complex solutions and write them as a ± bi for real numbers a and b. 
Solve systems of equations 
5. Prove that, given a system of two equations in two variables, replacing one equation by the sum of that 
equation and a multiple of the other produces a system with the same solutions. 
6. Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of 
linear equations in two variables. 
7. Solve a simple system consisting of a linear equation and a quadratic equation in two variables 
algebraically and graphically. For example, find the points of intersection between the line y = –3x and 
the circle x2 +y2 = 3. 
8. (+) Represent a system of linear equations as a single matrix equation in a vector variable. 
9. (+) Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using 
technology for matrices of dimension 3 × 3 or greater). 
Represent and solve equations and inequalities graphically 
10. Understand that the graph of an equation in two variables is the set of all its solutions plotted in the 
coordinate plane, often forming a curve (which could be a line). 
11. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) 
intersect are the solutions of the equation f(x) = g(x); find the solutions approximately, e.g., using 
technology to graph the functions, make tables of values, or find successive approximations. Include 
cases where f(x) and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic 

functions. ★ 

12. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in 
the case of a strict inequality), and graph the solution set to a system of linear inequalities in two 
variables as the intersection of the corresponding half-planes.
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HS Conceptual Category: Functions 

Domains Interpreting Functions Building Functions Linear, Quadratic, and Exponential 

Models 

Trigonometric Functions 

Clusters 

 Understand the concept of a 

function and use function 

notation 

 Interpret functions that arise 

in applications in terms of the 

context 

 Analyze functions using 

different representations 

 Build a function that models 

a relationship between two 

quantities 

 Build new functions from 

existing functions 

 Construct and compare linear, 

quadratic, and exponential models and 

solve problems 

 Interpret expressions for functions in 

terms of the situation they model 

 

 Extend the domain of trigonometric 

functions using the unit circle 

 Model periodic phenomena with 

trigonometric functions 

 Prove and apply trigonometric 

identities 

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of 

structure. 

8. Look for and express regularity in 

repeated reasoning. 
 

Functions describe situations where one quantity determines another. For example, the return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the 

length of time the money is invested. Because we continually make theories about dependencies between quantities in nature and society, functions are important tools in the 

construction of mathematical models. In school mathematics, functions usually have numerical inputs and outputs and are often defined by an algebraic expression. For example, 

the time in hours it takes for a car to drive 100 miles is a function of the car’s speed in miles per hour, v; the rule T(v) = 100/v expresses this relationship algebraically and defines a 

function whose name is T. The set of inputs to a function is called its domain. We often infer the domain to be all inputs for which the expression defining a function has a value, or 

for which the function makes sense in a given context. A function can be described in various ways, such as by a graph (e.g., the trace of a seismograph); by a verbal rule, as in, “I’ll 

give you a state, you give me the capital city;” by an algebraic expression like f(x) = a + bx; or by a recursive rule. The graph of a function is often a useful way of visualizing the 

relationship of the function models, and manipulating a mathematical expression for a function can throw light on the function’s properties. Functions presented as expressions can 

model many important phenomena. Two important families of functions characterized by laws of growth are linear functions, which grow at a constant rate, and exponential 

functions, which grow at a constant percent rate. Linear functions with a constant term of zero describe proportional relationships. A graphing utility or a computer algebra system 

can be used to experiment with properties of these functions and their graphs and to build computational models of functions, including recursively defined functions. 

 

Connections to Expressions, Equations, Modeling, and Coordinates. Determining an output value for a particular input involves evaluating an expression; finding inputs that 

yield a given output involves solving an equation. Questions about when two functions have the same value for the same input lead to equations, whose solutions can be visualized 

from the intersection of their graphs. Because functions describe relationships between quantities, they are frequently used in modeling. Sometimes functions are defined by a 

recursive process, which can be displayed effectively using a spreadsheet or other technology. 

 

 

 

 

 



Arizona’s Common Core Standards – Mathematics 
High School Standards Placemats 

Arizona Department of Education Arizona’s Common Core Standards - Mathematics High School Placemats – Published August 2012          Page 6 of 12 

Interpreting Functions F-IF 
Understand the concept of a function and use function notation 
1. Understand that a function from one set (called the domain) to another set (called the range) assigns to each 
element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) 
denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). 
2. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function 
notation in terms of a context. 
3. Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. 
For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for n 1. 
Interpret functions that arise in applications in terms of the context 
4. For a function that models a relationship between two quantities, interpret key features of graphs and tables in 
terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key 
features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative 

maximums and minimums; symmetries; end behavior; and periodicity. ★ 

5. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For 
example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the 

positive integers would be an appropriate domain for the function★ 

6. Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a 

specified interval. Estimate the rate of change from a graph. ★ 

Analyze functions using different representations 
7. Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using 
technology for more complicated cases.★ 
a. Graph linear and quadratic functions and show intercepts, maxima, and minima. 
b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value 
functions. 
c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior. 
d. (+) Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and 
showing end behavior. 
e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, 
showing period, midline, and amplitude. 
8. Write a function defined by an expression in different but equivalent forms to reveal and explain different properties 
of the function. 
a. Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and 
symmetry of the graph, and interpret these in terms of a context. 
b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent 
rate of change in functions such as y = (1.02) t y = (0.97) t y = (1.01) 12t, y = (1.2) t/10, and classify them as representing 
exponential growth or decay. 9. Compare properties of two functions each represented in a different way 
(algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one 
quadratic function and an algebraic expression for another, say which has the larger maximum. 
Building Functions F-BF 
Build a function that models a relationship between two quantities 

1. Write a function that describes a relationship between two quantities. ★ 

a. Determine an explicit expression, a recursive process, or steps for calculation from a context. 
b. Combine standard function types using arithmetic operations. For example, build a function that models the 
temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to 
the model. 
c. (+) Compose functions. For example, if T(y) is the temperature in the atmosphere as a function of height, and h(t) is 
the height of a weather balloon as a function of time, then T(h(t)) is the temperature at the location of the weather 
balloon as a function of time. 
2. Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model 

situations, and translate between the two forms. ★ 

Build new functions from existing functions 

3. Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both 
positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the 
effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic 
expressions for them. 
4. Find inverse functions. 
a. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the 
inverse. For example, f(x) =2 x3 or f(x) = (x+1)/(x–1) for x≠1. 
b. (+) Verify by composition that one function is the inverse of another. 
c. (+) Read values of an inverse function from a graph or a table, given that the function has an inverse. 
d. (+) Produce an invertible function from a non-invertible function by restricting the domain. 
5. (+) Understand the inverse relationship between exponents and logarithms and use this relationship to solve 
problems involving logarithms and exponents. 

Linear, Quadratic, and Exponential Models ★F -LE 

Construct and compare linear, quadratic, and exponential models and solve problems 
1. Distinguish between situations that can be modeled with linear functions and with exponential functions. 
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by 
equal factors over equal intervals. 
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. 
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to 
another. 
2. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a 
description of a relationship, or two input-output pairs (include reading these from a table). 
3. Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing 
linearly, quadratically, or (more generally) as a polynomial function. 
4. For exponential models, express as a logarithm the solution to abct = d where a, c, and d are numbers and the base 
b is 2, 10, or e; evaluate the logarithm using technology. 
Interpret expressions for functions in terms of the situation they model 
5. Interpret the parameters in a linear or exponential function in terms of a context. 
Trigonometric Functions F-TF 
Extend the domain of trigonometric functions using the unit circle 
1. Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle. 
2. Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real 
numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle. 
3. (+) Use special triangles to determine geometrically the values of sine, cosine, tangent for ∏/3, ∏/4 and ∏/6, and 
use the unit circle to express the values of sine, cosine, and tangent for ∏–x, ∏+x, and 2∏–x in terms of their values 
for x, where x is any real number. 
4. (+) Use the unit circle to explain symmetry (odd and even) and periodicity of trigonometric functions. 
Model periodic phenomena with trigonometric functions 

5. Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline. ★ 

6. (+) Understand that restricting a trigonometric function to a domain on which it is always increasing or always 
decreasing allows its inverse to be constructed. 
7. (+) Use inverse functions to solve trigonometric equations that arise in modeling contexts; evaluate the solutions 

using technology, and interpret them in terms of the context. ★ 

Prove and apply trigonometric identities 
8. Prove the Pythagorean identity sin2 (θ) + cos2 (θ) = 1 and use it to find sin(θ), cos(θ), or tan(θ) given sin(θ), cos(θ), 
or tan(θ) and the quadrant of the angle. 
9. (+) Prove the addition and subtraction formulas for sine, cosine, and tangent and use them to solve problems. 
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HS Conceptual Category: Modeling denoted with a star (★) 

Domains Modeling is best interpreted not as a collection of isolated topics but rather in relation to other standards. Making mathematical models is a Standard for 

Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (  ). Clusters 

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and    

critique the reasoning of others. 

4.   Model with mathematics. 

5. Use appropriate tools 

strategically. 

6. Attend to precision. 

7. Look for and make use of 

structure. 

8. Look for and express 

regularity in repeated 

reasoning. 

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to 

analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can 

be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing 

predictions with data. A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a 

coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our 

purposes. Other situations—modeling a delivery route, a production schedule, or a comparison of loan amortizations—need more elaborate models that use other tools from the mathematical 

sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process. 

Like every such process, this depends on acquired expertise as well as creativity. Some examples of such situations might include: 

 Estimating how much water and food is needed for emergency relief in a devastated city of 3 million people, and how it might be distributed. 

 Planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player. 

 Designing the layout of the stalls in a school fair so as to raise as much money as possible.   

 Analyzing stopping distance for a car.                                                                                                                                           

 Modeling savings account balance, bacterial colony growth, or investment growth. 

 Engaging in critical path analysis, e.g., applied to turnaround of an aircraft at an airport. 

 Analyzing risk in situations such as extreme sports, pandemics, and terrorism. 

 Relating population statistics to individual predictions.  

In situations like these, the models devised depend on a number of factors: How precise an answer do we want or need? What aspects of the situation do we most need to understand, control, 

or optimize? What resources of time and tools do we have? The range of models that we can create and analyze is also constrained by the limitations of our mathematical, statistical, and 

technical skills, and our ability to recognize significant variables and relationships among them. Diagrams of various kinds, spreadsheets and other technology, and algebra are powerful tools 

for understanding and solving problems drawn from different types of real-world situations. One of the insights provided by mathematical modeling is that essentially the same mathematical 

or statistical structure can sometimes model seemingly different situations. Models can also shed light on the mathematical structures themselves, for example, as when a model of bacterial 

growth makes more vivid the explosive growth of the exponential function. The basic modeling cycle is summarized in the diagram. It involves  

(1) identifying variables in the situation and selecting those that represent essential features,  

(2) formulating a model by creating and selecting geometric, graphical, tabular, algebraic, or statistical representations that describe relationships between the variables,  

(3) analyzing and performing operations on these relationships to draw conclusions,  

(4) interpreting the results of the mathematics in terms of the original situation,  

(5a) validating the conclusions by comparing them with the situation, and then either (5b) improving the model or, if is acceptable,  

(6) reporting on the conclusions and the reasoning behind them. Choices, assumptions, and approximations are present throughout this cycle. 

In descriptive modeling, a model simply describes the phenomena or summarizes them in a compact form. Graphs of observations are a familiar descriptive model—for example, graphs of 

global temperature and atmospheric CO2 over time. Analytic modeling seeks to explain data on the basis of deeper theoretical ideas, albeit with parameters that are empirically based; for 

example, exponential growth of bacterial colonies (until cut-off mechanisms such as pollution or starvation intervene) follows from a constant reproduction rate. Functions are an important 

tool for analyzing such problems. Graphing utilities, spreadsheets, computer algebra systems, and dynamic geometry software are powerful tools that can be used to model purely 

mathematical phenomena (e.g., the behavior of polynomials) as well as physical phenomena. 

1 
2 

3 4 

5

a 

6 5

b 
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HS Conceptual Category: Geometry 
Domains Congruence Similarity, Right Triangles, and 

Trigonometry 

Circles Expressing Geometric 

Properties with Equations 

Geometric Measurement 

and Dimension 

Modeling with 

Geometry 

Clusters 

 Experiment with 

transformations in 

the plane 

Understand 

congruence in 

terms of rigid 

motions 

 Prove geometric 

theorems 

 Make geometric 

constructions 

 Understand similarity in terms 

of similarity transformations 

 Prove theorems involving 

similarity 

 Define trigonometric ratios and 

solve problems involving right 

triangles 

 Apply trigonometry to general 

triangles 

 Understand and apply 

theorems about circles 

 Find arc lengths and 

areas of sectors of 

circles 

 Translate between the 

geometric description and 

the equation for a conic 

section 

 Use coordinates to prove 

simple geometric 

theorems algebraically 

 Explain volume 

formulas and use them 

to solve problems 

 Visualize relationships 

between two 

dimensional and three-

dimensional objects 

 Apply 

geometric 

concepts in 

modeling 

situations 

 

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of structure. 

8.  Look for and express regularity in 

repeated reasoning. 

An understanding of the attributes and relationships of geometric objects can be applied in diverse contexts—interpreting a schematic drawing, estimating the amount of wood needed to frame a 

sloping roof, rendering computer graphics, or designing a sewing pattern for the most efficient use of material. Although there are many types of geometry, school mathematics is devoted primarily to 

plane Euclidean geometry, studied both synthetically (without coordinates) and analytically (with coordinates). Euclidean geometry is characterized most importantly by the Parallel Postulate, that 

through a point not on a given line there is exactly one parallel line. (Spherical geometry, in contrast, has no parallel lines.) During high school, students begin to formalize their geometry experiences 

from elementary and middle school, using more precise definitions and developing careful proofs. Later in college some students develop Euclidean and other geometries carefully from a small set of 

axioms. The concepts of congruence, similarity, and symmetry can be understood from the perspective of geometric transformation. Fundamental are the rigid motions: translations, rotations, 

reflections, and combinations of these, all of which are here assumed to preserve distance and angles (and therefore shapes generally). Reflections and rotations each explain a particular type of 

symmetry, and the symmetries of an object offer insight into its attributes—as when the reflective symmetry of an isosceles triangle assures that its base angles are congruent. In the approach taken 

here, two geometric figures are defined to be congruent if there is a sequence of rigid motions that carries one onto the other. This is the principle of superposition. For triangles, congruence means the 

equality of all corresponding pairs of sides and all corresponding pairs of angles. During the middle grades, through experiences drawing triangles from given conditions, students notice ways to 

specify enough measures in a triangle to ensure that all triangles drawn with those measures are congruent. Once these triangle congruence criteria (ASA, SAS, and SSS) are established using rigid 

motions, they can be used to prove theorems about triangles, quadrilaterals, and other geometric figures. Similarity transformations (rigid motions followed by dilations) define similarity in the same 

way that rigid motions define congruence, thereby formalizing the similarity ideas of "same shape" and "scale factor" developed in the middle grades. These transformations lead to the criterion for 

triangle similarity that two pairs of corresponding angles are congruent. The definitions of sine, cosine, and tangent for acute angles are founded on right triangles and similarity, and, with the 

Pythagorean Theorem, are fundamental in many real-world and theoretical situations. The Pythagorean Theorem is generalized to non-right triangles by the Law of Cosines. Together, the Laws of 

Sines and Cosines embody the triangle congruence criteria for the cases where three pieces of information suffice to completely solve a triangle. Furthermore, these laws yield two possible solutions in 

the ambiguous case, illustrating that Side-Side-Angle is not a congruence criterion. Analytic geometry connects algebra and geometry, resulting in powerful methods of analysis and problem solving. 

Just as the number line associates numbers with locations in one dimension, a pair of perpendicular axes associates pairs of numbers with locations in two dimensions. This correspondence between 

numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an equation becomes a geometric curve, making visualization a 

tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for geometric understanding, modeling, and proof. Geometric 

transformations of the graphs of equations correspond to algebraic changes in their equations. Dynamic geometry environments provide students with experimental and modeling tools that allow them 

to investigate geometric phenomena in much the same way as computer algebra systems allow them to experiment with algebraic phenomena. 

 

Connections to Equations. The correspondence between numerical coordinates and geometric points allows methods from algebra to be applied to geometry and vice versa. The solution set of an 

equation becomes a geometric curve, making visualization a tool for doing and understanding algebra. Geometric shapes can be described by equations, making algebraic manipulation into a tool for 

geometric understanding, modeling, and proof.
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Congruence G-CO 
Experiment with transformations in the plane 
1. Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions 
of point, line, distance along a line, and distance around a circular arc. 
2. Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as 
functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve 
distance and angle to those that do not (e.g., translation versus horizontal stretch). 
3. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. 
4. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, 
and line segments. 
5. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, 
tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.  
Understand congruence in terms of rigid motions 
6. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given 
figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. 
7. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if 
corresponding pairs of sides and corresponding pairs of angles are congruent. 
8. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of 
rigid motions. 
Prove geometric theorems 
9. Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses 
parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular 
bisector of a line segment are exactly those equidistant from the segment’s endpoints. 
10. Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of 
isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half 
the length; the medians of a triangle meet at a point. 
11. Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the 
diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. 
Make geometric constructions 
12. Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective 
devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; 
bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a 
line parallel to a given line through a point not on the line. 
13. Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. 
Similarity, Right Triangles, and Trigonometry G-SRT 
Understand similarity in terms of similarity transformations 
1. Verify experimentally the properties of dilations given by a center and a scale factor: 
a. Dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the 
center unchanged. 
b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. 
2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain 
using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and 
the proportionality of all corresponding pairs of sides. 
3. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. 
Prove theorems involving similarity 
4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two 
proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. 
5. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. 
Define trigonometric ratios and solve problems involving right triangles 
6. Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of 
trigonometric ratios for acute angles. 
7. Explain and use the relationship between the sine and cosine of complementary angles. 
 
 

 

8. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. ★ 

Apply trigonometry to general triangles 
9. (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to 
the opposite side. 
10. (+) Prove the Laws of Sines and Cosines and use them to solve problems. 
11. (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right 
triangles (e.g., surveying problems, resultant forces). 
Circles G-C 
Understand and apply theorems about circles 
1. Prove that all circles are similar. 
2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, 
inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to 
the tangent where the radius intersects the circle. 
3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in 
a circle. 
4. (+) Construct a tangent line from a point outside a given circle to the circle.  
Find arc lengths and areas of sectors of circles 
5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the 
radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. 
Expressing Geometric Properties with Equations G-GPE 
Translate between the geometric description and the equation for a conic section 
1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the 
center and radius of a circle given by an equation. 
2. Derive the equation of a parabola given a focus and directrix. 
3. (+) Derive the equations of ellipses and hyperbolas given the foci, using the fact that the sum or difference of distances from 
the foci is constant. 
Use coordinates to prove simple geometric theorems algebraically 
4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by 
four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, √3) lies on the circle centered at the 
origin and containing the point (0, 2). 
5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the 
equation of a line parallel or perpendicular to a given line that passes through a given point). 
6. Find the point on a directed line segment between two given points that partitions the segment in a given ratio.  
7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance 

formula.★ 

Geometric Measurement and Dimension G-GMD 
Explain volume formulas and use them to solve problems 
1. Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, 
and cone. Use dissection arguments, Cavalieri’s principle, and informal limit arguments. 
2. (+) Give an informal argument using Cavalieri’s principle for the formulas for the volume of a sphere and other solid figures. 

3. Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems. ★ 

Visualize relationships between two-dimensional and three dimensional objects 
4. Identify the shapes of two-dimensional cross-sections of three dimensional objects, and identify three-dimensional objects 
generated by rotations of two-dimensional objects. 
Modeling with Geometry G-MG 
Apply geometric concepts in modeling situations 
1. Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso 

as a cylinder). ★ 

2. Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic 

foot). ★ 

3. Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or 

minimize cost; working with typographic grid systems based on ratios) ★
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HS Conceptual Category: Statistics and Probability 
 

Domains Interpreting Categorical and 

Quantitative Data 

Making Inferences and Justifying 

Conclusions 

Conditional Probability and the Rules 

of Probability 

Using Probability to Make Decisions 

Clusters 

 Summarize, represent, and 

interpret data on a single 

count or measurement 

variable 

 Summarize, represent, and 

interpret data on two 

categorical and quantitative 

variables Interpret linear 

models 

 Understand and evaluate random 

processes underlying statistical 

experiments 

 Make inferences and justify 

conclusions from sample 

surveys, experiments and 

observational studies 

 Understand independence and 

conditional probability and use them 

to interpret data  

 Use the rules of probability to 

compute probabilities of compound 

events in a uniform probability model 

 Calculate expected values and use 

them to  solve problems 

 Use probability to evaluate outcomes 

of decisions 

Mathematical 

Practices 

1. Make sense of problems and 

persevere in solving them. 

2. Reason abstractly and 

quantitatively. 

3. Construct viable arguments and 

critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 

6. Attend to precision. 

7. Look for and make use of 

structure. 

8.  Look for and express regularity in 

repeated reasoning. 
 

Decisions or predictions are often based on data—numbers in context. These decisions or predictions would be easy if the data always sent a clear message, but the message is often 

obscured by variability. Statistics provides tools for describing variability in data and for making informed decisions that take it into account. Data are gathered, displayed, 

summarized, examined, and interpreted to discover patterns and deviations from patterns. Quantitative data can be described in terms of key characteristics: measures of shape, 

center, and spread. The shape of a data distribution might be described as symmetric, skewed, flat, or bell shaped, and it might be summarized by a statistic measuring center (such 

as mean or median) and a statistic measuring spread (such as standard deviation or interquartile range).Different distributions can be compared numerically using these statistics or 

compared visually using plots. Knowledge of center and spread are not enough to describe a distribution. Which statistics to compare, which plots to use, and what the results of a 

comparison might mean, depend on the question to be investigated and the real-life actions to be taken. Randomization has two important uses in drawing statistical conclusions. 

First, collecting data from a random sample of a population makes it possible to draw valid conclusions about the whole population, taking variability into account. Second, 

randomly assigning individuals to different treatments allows a fair comparison of the effectiveness of those treatments. A statistically significant outcome is one that is unlikely to 

be due to chance alone, and this can be evaluated only under the condition of randomness. The conditions under which data are collected are important in drawing conclusions from 

the data; in critically reviewing uses of statistics in public media and other reports, it is important to consider the study design, how the data were gathered, and the analyses 

employed as well as the data summaries and the conclusions drawn. Random processes can be described mathematically by using a probability model: a list or description of the 

possible outcomes (the sample space), each of which is assigned a probability. In situations such as flipping a coin, rolling a number cube, or drawing a card, it might be reasonable 

to assume various outcomes are equally likely. In a probability model, sample points represent outcomes and combine to make up events; probabilities of events can be computed 

by applying the Addition and Multiplication Rules. Interpreting these probabilities relies on an understanding of independence and conditional probability, which can be approached 

through the analysis of two-way tables. Technology plays an important role in statistics and probability by making it possible to generate plots, regression functions, and correlation 

coefficients, and to simulate many possible outcomes in a short amount of time. 

 

Connections to Functions and Modeling. Functions may be used to describe data; if the data suggest a linear relationship, the relationship can be modeled with a regression line, 

and its strength and direction can be expressed through a correlation coefficient. 
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Interpreting Categorical and Quantitative Data S-ID 
Summarize, represent, and interpret data on a single count or measurement variable 
1. Represent data with plots on the real number line (dot plots, histograms, and box plots). 
2. Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread 
(interquartile range, standard deviation) of two or more different data sets. 
3. Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects 
of extreme data points (outliers). 
4. Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population 
percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, 
spreadsheets, and tables to estimate areas under the normal curve. 
Summarize, represent, and interpret data on two categorical and quantitative variables 
5. Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the 
context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible 
associations and trends in the data. 
6. Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. 
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given 
functions or chooses a function suggested by the context. Emphasize linear, quadratic, and exponential models. 
b. Informally assess the fit of a function by plotting and analyzing residuals. 
c. Fit a linear function for a scatter plot that suggests a linear association. 
Interpret linear models 
7. Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. 
8. Compute (using technology) and interpret the correlation coefficient of a linear fit. 
9. Distinguish between correlation and causation. 
Making Inferences and Justifying Conclusions S-IC 
Understand and evaluate random processes underlying statistical experiments 
1. Understand statistics as a process for making inferences about population parameters based on a random 
sample from that population. 
2. Decide if a specified model is consistent with results from a given data-generating process, e.g., using 
simulation. For example, a model says a spinning coin will fall heads up with probability 0.5. Would a result of 5 
tails in a row cause you to question the model? 
Make inferences and justify conclusions from sample surveys, experiments, and observational studies 
3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; 
explain how randomization relates to each.  
4. Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through 
the use of simulation models for random sampling. 
5. Use data from a randomized experiment to compare two treatments; use simulations to decide if differences 
between parameters are significant. 
6. Evaluate reports based on data.  
Conditional Probability and the Rules of Probability S-CP 
Understand independence and conditional probability and use them to interpret data 
1. Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the 
outcomes, or as unions, intersections, or complements of other events (“or,” “and,” “not”). 
2. Understand that two events A and B are independent if the probability of A and B occurring together is the 
product of their probabilities, and use this characterization to determine if they are independent. 
3. Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B 
as saying that the conditional probability of A given B is the same as the probability of A, and the conditional 
probability of B given A is the same as the probability of B. 

4. Construct and interpret two-way frequency tables of data when two categories are associated with each object 
being classified. Use the two-way table as a sample space to decide if events are independent and to approximate 
conditional probabilities. For example, collect data from a random sample of students in your school on their 
favorite subject among math, science, and English. Estimate the probability that a randomly selected student from 
your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare 
the results. 
5. Recognize and explain the concepts of conditional probability and independence in everyday language and 
everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance 
of being a smoker if you have lung cancer. 
Use the rules of probability to compute probabilities of compound events in a uniform probability model 
6. Find the conditional probability of A given B as the fraction of B’s outcomes that also belong to A, and interpret 
the answer in terms of the model. 
7. Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. 
8. (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B|A) = P(B)P(A|B), 
and interpret the answer in terms of the model. 
9. (+) Use permutations and combinations to compute probabilities of compound events and solve problems. 
Using Probability to Make Decisions S-MD 
Calculate expected values and use them to solve problems 
1. (+) Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample 
space; graph the corresponding probability distribution using the same graphical displays as for data distributions. 
2. (+) Calculate the expected value of a random variable; interpret it as the mean of the probability distribution. 3. 
(+) Develop a probability distribution for a random variable defined for a sample space in which theoretical 
probabilities can be calculated; find the expected value. For example, find the theoretical probability distribution for 
the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each 
question has four choices, and find the expected grade under various grading schemes. 
4. (+) Develop a probability distribution for a random variable defined for a sample space in which probabilities are 
assigned empirically; find the expected value. For example, find a current data distribution on the number of TV 
sets per household in the United States, and calculate the expected number of sets per household. How many TV 
sets would you expect to find in 100 randomly selected households? 
Use probability to evaluate outcomes of decisions 
5. (+) Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected 
values. 
a. Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery 
ticket or a game at a fastfood restaurant. 
b. Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible 
versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or 
a major accident. 
6. (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). 
7. (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a 
hockey goalie at the end of a game).
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HS Conceptual Category: Contemporary Mathematics (Arizona addition) 

 

Domains Discrete Mathematics 

Clusters 
 

Understand and apply vertex-edge graph topics 

Mathematical 
Practices 

1. 1.     Make sense of problems and 
persevere in solving them. 

2. Reason abstractly and 
quantitatively. 

3. Construct viable arguments and 
critique the reasoning of others. 

4. Model with mathematics. 

5. Use appropriate tools strategically. 
6. Attend to precision. 

7. Look for and make use of structure. 
8.  Look for and express regularity in repeated 

reasoning. 

 
Discrete mathematics is contemporary mathematics. This area of mathematics is very relevant in today’s technologically advanced society. Discrete mathematics provides the underpinnings for many features 
of the Internet, from encryption of credit card numbers to decompression and compression of photographs, music, and video. It also informs the efficiency of our communication and transportation systems, 
such as determining the shortest path through a network or identifying the most cost effective design of airline or bus routes. The power of discrete mathematics is exemplified through the motivational impact 
on students. They are not only immersed in interesting mathematics but are actively engaged in the “doing” of mathematics. Mathematics is not a bystander sport.  

Discrete mathematics topics, particularly vertex-edge graphs, afford students the opportunity to access problem solving in a meaningful context. Students strengthen their skills in problem solving, reasoning, 
conjecturing, communication, analysis, and proof. They apply the Standards for Mathematical Practice as they solve discrete mathematics problems. Discrete mathematics courses play an increasingly 
important role in the high school curriculum as possible pathways for those students who seek meaningful 4th credit courses that connect to technology and the needs of the 21st century learner. 

Graph theory is the formal study of vertex-edge graphs. Unlike graphs used in data analysis, vertex-edge graphs are used to visually represent problem situations. Vertex-edge graphs are used to model and 
solve problems related to paths, circuits, or the relationship among a set of objects.  

Connections to Modeling. Mathematical modeling occurs when students follow a multistep process of solving problems and represent the key ideas through a visual representation. These visual 
representations allow students multiple entry points for solving a problem, ensuring material that is both engaging and accessible. Examples of real word situations that could be modeled using a vertex-edge 
graph are 1) planning a table tennis tournament for 7 players at a club with 4 tables, where each player plays against each other player or 2) engaging in critical path analysis, e.g., applied to turnaround of an 
aircraft at an airport. 

Discrete Mathematics (CM-DM) 
Understand and apply vertex-edge graph topics 
 

AZ.HS.CM-DM.1. Study the following topics related to vertex-edge graphs: Euler circuits, Hamilton circuits, the Travelling Salesperson Problem (TSP), minimum weight spanning trees, shortest paths, vertex 
coloring, and adjacency matrices. 
 

AZ.HS.CM-DM.2. Understand, analyze, and apply vertex-edge graphs to model and solve problems related to paths, circuits, networks, and relationships among a finite number of elements, in real-world and 
abstract settings. 
 

AZ.HS.CM-DM.3. Devise, analyze, and apply algorithms for solving vertex-edge graph problems. 
 

AZ.HS.CM-DM.4. Extend work with adjacency matrices for graphs, such as interpreting row sums and using the nth power of the adjacency matrix to count paths of length n in a graph.
 


